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L. Introduction : Observations of Langley on
Atmospherical Absorption.

GREAT deal has been written on the influence of

the absorption of the atmosphere upon the climate.
Tyndail t in particalar has pointed out the enormous im-
portance of this question.  To him it was chiefly the diurnal
and annual variations of the temperature that were lessened by
this circumstance.  Another side of the question, that has long
attracted the attention of physicists, is this : Is the mean
temperature of the ground in any way influenced by the
presence of heat-absorbing gases inthe atmosphere Fourier}
maintained that the atmosphere acts like the glass of u hot-
house, because it lets through the light rays of the sun but
vetains the dark rays from the ground. This idea was
elaborated by Pouillet § ; and Langley was by some of his
researches led to the view, that “ the temperature of the
earth under direct sunshine, even though our atmosphere
were present as now, would probably fall to —200° C., if
that atmosphere ({id not possess the quality of selective

Sciences, 11th December, 1895,  Communicated by the Author,
t ¢ Heat a Mode of Motion,” 2nd ed. p. 405 (Lond., 1865).
I Mém, de ' Ae. R. d. Sei. de I'Inst. de France, t. vii, 1827,
§ Comptes rendus, t. vil. p. 41 (1838),

Lhil, Mag. S. 5. Vol. 41. No. 251, April 1896, S

" Extract from a paper presented to the Royal Swedish Academy of

In 1896, Arrhenius made the

connection between
atmospheric CO, and global
climate!



Greenhouse Gases & Global Climate Change
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January 1959 - January 2022

Atmospheric (02

January CO2 | Year-on-Year | Mauna Loa Observatory
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Time Scales for Exchange
Atm.-surface ocean ~ 10 yr
Atm. - deep ocean ~1000 yr

_ e ~ 5 7 . .
Atm./Ocean - sediments ~ 10° to 10 yi\.tmosphere Oceanic processes drive

W L glacial to interglacial
A) .

changes in atm. CO,

60X more CO, in ocean
than in atmosphere!

. HCO3 0.39
P> (Rivers)

[3440]| ©2C0s

Resevoir size [Pg] co——cc——cc—cco—cco—ecceadodooooo=oo=o ko=
----- » Long-term fluxes Ocean Particle ;sottling DIC

——» Short-term fluxes [38,000]
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N@ Vel 10 (R) £
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m The global carbon cycle. Values in brackets are preanthropogenic reservoir sizes in Pg (10'° g); values on the arrows
are furxes in Pgy . Dashed lines represent the long-term carbon cycle determined by weathering. Values are normalized to the flux
of DIC from rivers (see Chapter 2). Solid arrows are the shorter-term carbon fluxes associated with photosynthesis and respiration.
The wiggly vertical line indicates particulate C and DOC transport from the ocean euphotic zone to deep water. Symbols: W,
weathering of carbonates (CaCO; 4+ CO, + H,O0 — 2HCO3; + Ca2+) and silicates (silicate + CO, + H,0 —

clay + HCO;3; ™ + cations); GE, gas exchange; P, gross photosynthesis (CO, + H,O — CH,O (OM) + O,); R, respiration (CH,O
(OM) + O, — CO, + H,0); PPT, calcite precipitation (the reverse of carbonate weathering); H, hydrothermal processes; RW,
reverse weathering (the reverse of silicate weathering).
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Sketch of the three- Atmosphere
box model of the atmosphere,
surface and deep ocean. Equations
indicate the circulation dynamics

(Vi in my ™', is the mixing rate Equilibrium
between the surface and deep Surface Ocean (S) A
ocean.); stoichiometry of the >
particulate transport (/ in mol m > v é J
~1); and chemical equilibria of the =
y O r Deep Ocean (D) y ¥ DIPo = 2.2 mmol kg™
carbonate system.

At o = 2371 meq kg™’
DIC, = 2258 pmol kg™

Dynamics: Vj x

d[CtD] =0=V,x([Cg]-[Cp]) +J

Stoichiometry: AP : AN : ADIC : AAt : ACa

1:16 : 136 : 44 : 30
Equilibrium:

DIC =[HCO3] +[CO3 ] +[CO,]
Acgs =[HCO3]+2 x[COZ ] +[B(OH);]
Br = B(OH), + B(OH; )

. 21c0d] K, 1003 11H']
T oo, [HCO;]
K [HCO3] [H*] K. - [BOH)4 ] [H']

[CO,] " [BOH)3]



380 | THE GLOBAL CARBON CYCLE

f _E_E.ZTable 1_1 2. I The eﬁect of the solu ili and 1olo_g1cal pumps on the ﬁLgaczty of 602 m the atmosphe

'_.__':_determmed by the s¢mple Two- layer ocedﬂ' model___deptcted in Fzg 11 2

The ﬁrst row zs the standard case.
i_carbon ﬂux c1rcu1at10n rate and th

OC CaCOa

'd_the rdws under th1s 1nd1cate changes due o tempe
r'gamc carbon to CaCOB ratm of the parucle"'--ﬂ

Temp  [DIP]s T mix Rocica DICS
Case °C umol I<g_E y umol kg_'
Standard 20 05 1000 3.5 2027
Temp. effect |5
25
Biol. pump
Carbon flux 20 2.2 27258
0.0 959
Circulation 0.85 500 2074
0.0 1500 1959
OCCaCO; 0.5 1000 1 O: 2059
(P-OC = 106)
|.5:] | 957




Latitude S

SOFEX Fe Fertilization Study 1n Southern Ocean
North Patch
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he Greenhouse Effect

%70 greenhouse avg. earth temp. ~ -25° C instead of +15 with

Some solar radiation
is reflected by the
Earth and the
atmosphere.

Some of the infrared
radiation Easses through
the atmosp

ere, and some
is absorbed and re-emitted
in all directions by

’ greenhouse gas
& molecules. The effect of
> this is to warm the Earth's
surface and the lower

atmosphere.

4 4

Solar radiation %
passes through

the clear |
atmosphere

Most radiation is

EARTH /\
absorbed by the Earth's

surface and warms it. Infrared radiation is
emitted from the

Earth's surface:

Source: OSTP



Radiation Transmitted by the Atmosphere
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(a) Global atmospheric concentrations of three well mixed
greenhouse gases
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Global fossil fuel consumption
Global primary energy consumption by fossil fuel source, measured in terawatt-hours (TWh).
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Source: Vaclav Smil (2017). Energy Transitions: Global and National Perspective & BP Statistical Review of World Energy
OurWorldInData.org/fossil-fuels/ « CC BY



Atmospheric Carbon Dioxide Concentration
and Temperature Change

Current
Level —»

® Clear correlation

T between atmospheric
(Antarctic Ice Core) C02 and temperature

over last 160,000 years

° Current level of CO, is
outside bounds of
natural variability

Carbon dioxide (ppmv)

°Rate of change of CO,
is also unprecedented
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Emitted Resulting atmospheric Radiative forcing by emissions and drivers LEvel of

compound drivers confidence
: I

Anthropogenic

Short lived gases and aerosols
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Global Climate Drivers
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Heat-trapping emissions (greenhouse gases) far
outweigh the effects of other drivers acting on

Earth's climate.
Source: Hansen et al. 2005,



Departures in temperature (°C)
from the 1961-1990 average

Departures in temperature (°C)

from the 1961-1990 average
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Atmospheric Carbon Dioxide Concentration
and Temperature Change

Temperature change ('C)
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osphere (Antarclic Ice Core)

= Temperature changes through time
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RCP 8.5

RCP 2.6
Change in average surface temperature (1986—-2005 to 2081
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(C) Northern Hemisphere September sea ice extent (average 2081-2100)

== CMIPS multi-model
average 1986-2005

[ ] CMIP5 multi-model
average 2081-2100
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10 m sea level rise

FIGURE 2 Sea Level Rise In Line with Highest Projection
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Source (IPCC 2007 and
Pfeffer et al. 2008).4.5
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FIGURE 2 5ea Level Rise by End of This Century
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CO, flux (Gt Clyr)

Data: CDIAC/NOAA-ESRL/GCP
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sinks. This imbalance reflects
=107 the gap in our understanding.
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Atmosphere Net transfer to ocean due to disequilibrium in pCO,

CO,

Warm, Temp/Tropical Air/sea exchange
Surface Ocean + H 20 calibrated with “C and
Rn tracers

2HCO, +— H,CO,+ CO,"
| 1

Surface/deep
exchange primary
brake on net CO, Whole ocean has the capacity to absorb 5/6
transfer ‘
of the atm. increase in CO, through this

mechanism, but can only occur on time scale of
surface to deep mixing ~ hundreds of years

\ 4

Cold, Deep -
Interior Ocean HCO3



APROXIMATE
EARTH CARBON BUDGET
FOR THE 1980s;
THE ANTHROPOGENIC PERTURBATION

FOSSIL FUEL

BURNING DEFORESTATION
5.4GtC/yr ~1.0OGtC/yr

IN ATMOSPHERE

Zlostciyr 336y

ﬂ ’ - ACCUMULATION
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(gigatons of carbon/year)*
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~c. /
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Depth (km)
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A cross section of
the anthropogenic CO, in the
ocean as determined by the C*
method. Robert Key, personal
communication; Key et al. (2004).
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